
Reversible transformations of shapes and sizes of uncharged ergospheres

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 1979

(http://iopscience.iop.org/0305-4470/15/6/036)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 1979-1986. Printed in Great Britain 

Reversible transformations of shapes and sizes of 
uncharged ergospheres 

N Spyrou 
Astronomy Department, University of Thessaloniki, Thessaloniki, Greece 

Received 23 October 1981, in final form 19 January 1982 

Abstract. The shape and size of a Kerr ergosphere and their reversible transformations 
are studied systematically. It is proved that due to the ergosphere's total angular momen- 
tum, a bulge always forms on its outer boundary either on the axis of rotational symmetry 
or off it. During the reversible increase of the angular momentum, because of the injection 
of particles into the ergosphere, the bulge can either approach the symmetry plane or 
recede from it, while its angular separation from the positive rotation axis increases 
continuously, approaching the value of 30" for the extreme Kerr ergosphere. The reversible 
changes of the ergosphere's linear dimensions parallel to the rotation axis and perpen- 
dicular to it are studied and the corresponding ranges of their permitted values are specified. 

1. Introduction 

The stationary-limit surface and the exterior event horizon of a Kerr black hole of 
total mass energy m and total angular momentum S (in geometrised units) forming 
the outer and the inner boundary, respectively, of the hole's ergosphere, in Boyer- 
Lindquist (1967) coordinates t, r, 6, Q (-00 < t < 00, r+ < r < a, 0 T, 0 s cp s 27r) 
are located at distances R+ and r+ defined by 

4 

r = R+ = m[ 1 + (1 
m 

In terms of r, 6 the Kerr coordinates x,  y ,  z are expressed through the relations, 
suitable for our purposes, 

z = r cos 6, p = ( ~ ~ + y ~ ) ' / ~ =  ( r 2 + s 2 / m 2 ) ' I 2 s i n  6 (1.3) 
and 

Z L  +--1. 
r 2 + S 2 / m 2  r 2 -  (1.4) 

If x ,  y ,  z are interpreted as orthogonal Cartesian coordinates, r, 6, Q will be interpreted 
as quasi-spheroidal coordinates, and in the plane (p, z )  the surfaces of constant r are 
confocal ellipsoids of revolution around the z axis with semiaxes ( r 2  + S2/m2)1/2 and 
r. In the case of the ergosphere's inner boundary r is independent of 6. This is not 
the case for the ergosphere's outer boundary on which r depends on 6. Moreover, 
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since z has the same sign as cos 6 ,  the surface of constant 6 is a half-hyperboloid, 
confocal to the ellipsoid, truncated at its waist, lying in the half-space z S 0 according 
to 6 S &r, and can be considered as measuring angular separations from the z axis. 

In § 2 of this article we study the shape of a Kerr ergosphere in terms of its 
parameters m and S and we prove that due to the angular momentum of the ergosphere 
a bulge always forms on its outer boundary. The behaviour of this bulge under the 
reversible transformations of m and S is studied in § 3. This permits us to study the 
behaviour of the ergosphere’s linear dimensions in § 4. Finally, in § 5 the results of 
the previous sections are discussed and compared with analogous results of earlier 
authors. 

2. The shape of the stationary-limit-surface 

It is straightforward to verify that, if the cosmic censorship hypothesis is valid (m2 > S ) ,  
the function z (6) defined by equation (1.3), and evaluated on the stationary-limit 
surface, presents extrema (z‘  = 0; a prime denotes total derivative with respect to 6, 
and a dot will denote total derivative with respect to S ) ,  when 

sin 6 = 0 (2.1) 
and/or 

- 1 i 2  

(2.2) 
S 2  112 s2 

1+ 1 - ~ c o s 2 6  -- 4 cos2 6 1 - 4  cos2 6) 
( m  ( Z  I m 

= 0. 

These two conditions are independent of each other, but they can hold simultaneously, 
if 

~ / m ’ =  J3 /2 .  (2.3) 

Direct consequences of equation (2.3) and the standard formula due to Christodoulou 
(1970) 

m2 = m,Z, + ~ ~ / 4 m ? ~  (2.4) 

m/mi, = 2 / J 3  and S / m  = mi,. (2.5) 

where mi, is the ergosphere’s irreducible mass, are the relations 

Now a simple calculation shows that, if equation (2.1) is true, 

z I ,so  if {S/”=mir 
Slm S mi, 

for 6 = 0 
for 6 = r.  

(2.6a) 
(2.6b) 

According to equations ( 2 . 6 ~ )  the extreme value of z on the axis z > 0 will be maximum 
(minimum), if the angular momentum per unit mass is smaller (larger) than the 
irreducible mass. The interpretation of equations (2.6b), where z < 0, mirrors that 
of equations (2.6a). In all these cases the extremum, 2, of z is 

for 6 = 0 
for 6 = m - r+ 

Next, if equation (2.2) is valid, then 

(2.7) 
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and 

Z ” S 0  if 6 s $T. (2.9) 

Therefore the solution (2.8) determines the position of a maximum (for S < ~ T )  or 
minimum (for 19 > $T) of t at a point off the rotation axis. Notice that this solution 
is consistent with equations (2.6) valid for points on the rotation axis, and moreover 
that 6 is determined solely in terms of the hole’s parameters. The extremum in t is 

z = * $ J 3 m 3 / s  for 6 S ~ T  (2.10) 

and occurs at a distance 

r = Sm > 121. 
Similarly we verify that p always attains its maximal value 

R = ( m 2 + s 2 / m 2 ) 1 f 2  

(2.11) 

(2.12) 

on the symmetry plane. 
The existence of a maximum in the value of z (>O) means that at the corresponding 

position a bulge forms on the ergosphere’s outer boundary. If S/m < mi, the bulge 
forms on the rotation axis at the distance of the event horizon, while if S / m  >mi, the 
bulge’s position is off the axis and is determined solely in terms of m and S. 

3. Reversible transformations of the ergosphere’s shape 

In this section we study the changes of the shape of the ergosphere’s boundaries, due 
to reversible increments, dm and dS, of its parameters, caused by the injection of 
particles into the ergosphere. These changes have to be related (Christodoulou 1970) 
by 

dmir L 0 dm L S  dS/m4mi  (3.1) 

with the equality (inequality) sign valid for reversible (irreversible) transformations. 
The attainable range of the ergosphere’s reversible transformations is described by 

dmi, = 0, O s S s m ,  1 c m/mi, c JZ (3.2) 

where the quantities m, S and mi, describe the system of the ergosphere and the 
particles. 

2 

3.1. The behaviour of 4 

With the aid of equations (2.8), (3.1) and (3.2) we find 

and 

(3.3) 

(3.4) 

where a dot denotes total derivative with respect to S,  keeping mi, constant. Thus 



1982 N Spyrou 

for all the possible reversible transformations, on the one hand 

8 S O  for 6 2 ir 
with the equality sign valid for the extreme Kerr ergosphere 

2 2 S = m  = 2 m i r  

and on the other hand 

820 for 6 2 h. 

(3.5) 

(3.6) 

(3.7) 

Therefore for the entire attainable range of reversible transformations 6, if smaller 
than &r, increases with increasing S (and decreases with decreasing S ) ,  while, if larger 
than $T, it decreases with increasing S (and increases with decreasing S). This means 
that, as S increases from mmi,, the angular separation of the bulge from the rotation 
axis increases continuously. The extreme value, 0, of 6 occurs for the extreme Kerr 
ergosphere, and, as deduced from equation (2.8), 

0 = 30°, 150" for 6 s i r ,  (3.8) 

The corresponding values of IzI and r are ZJ6mir and ?&mi,, respectively. Notice 
that the above conclusions are independent of the specific way with which S increases 
(reversibly). 

3.2. The behaviour of Z 

When the bulge forms on the rotation axis (0 < S s mmi,), 

Z = f r ,  (3.9) 

and hence the behaviour of the bulge's distance parallel to the rotation axis from the 
symmetry plane is the same as that of the event horizon distance. It is straightforward 
to prove that, if equations (3.2) are valid, 

*Z<O for 6 5 ir. (3.10) 

Considering for simplicity the case 4 < &T we observe that 2 decreases continuously, 
as S increases. For S almost equal to zero the bulge is at a maximal distance (for z > 0) 

(3.11) Z,,, = 2m = 2mi, 

from the symmetry plane, and with increasing S it decreases, attaining for S = mmi, 
a limiting value 

- 
(3.12) 3 zlim = Zm = J3mi,. 

It is remarkable that at this limiting position 

Z = - 3/8mi, < 0. (3.13) 

In view of the symmetry with respect to the equatorial plane the case 6 > &r (2 < 0) 
eactly mirrors the one just discussed. 
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After that limiting position, and as S increases (S > mmir), the bulge moves off 
the rotation axis, at a distance (see equation (2.10)) 

3 r =zm 3&m3 
Z = f - -(6 I 3 7 r ) ;  

4 s  
(3.14) 

where equations (1.3) and (2.8) have been used. From equations (3.14) we verify that 

*2<O(fo r4s$ . r r )  if mmir < s < J 2 m  3 ( 3 . 1 5 ~ )  

Z = O  ii s = J 2 m t  (3.15 6 )  

*:i>O(for65$7r) if JZmZ < s < 2mi5 ( 3 . 1 5 ~ )  

and so, as S increases reversibly, the bulge off this axis can either approach the 
symmetry plane or recede from it in contrast to the uniform behaviour of the angular 
separation 6 and of the extremum 2 on the rotation axis. Thus in the case 6 < &r 
for S slightly larger than mmir, 6 increases from zero. Since, however, at this region 
2 < 0  (see equation (3.13)), Z initially decreases with increasing S, until, for S =  
J2mir (whence 2 = 0, 2 > 0), it is at its closest distance to the symmetry plane, off 
the rotation axis, 

at 
2512 

r, = (33/2mir = Fz, 
and an angular separation a,, 

cos 6, = ($) lj2; 6, = 23" 17' 1'!43. 

( 3 . 1 6 ~ )  

(3.16b) 

( 3 . 1 6 ~ )  

After that Z increases with increasing S until for the extreme Kerr ergosphere it 

( 3 . 1 7 ~ )  

approaches a final value 

Z, = $6, = (33/2mir  

(3.17b) 

and an angular separation of 30", in accordance with the end of § 3.1. The discussion 
of the case 6 >&r (Z < 0) is analogous, and in this case the angular separations 6, 
and 30" are replaced by 180" - 6, and 150", respectively. 

3.3. The behaviour of R 

Using equations (2.12) and (3.1) we verify that 

R > O  (3.18) 

always and so for the maximal possible S, namely for the extreme Kerr ergosphere, 
R attains its maximal value 

R,,, = 2mir. (3.19) 
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4. The linear dimensions of the ergosphere's boundaries 

The results of the previous section permit the study of the reversible changes of the 
ergosphere's linear dimensions. In the Kerr coordinates we can use the quantities 

2z = 2\21 and 2 = 2 R  (4.1) 
to describe the linear dimensions of the ergosphere parallel and perpendicular to the 
symmetry axis, respectively. 

From equations (3.11) and (3.12) (bulge on the axis) and from equations ( 3 . 1 6 ~ )  
and ( 3 . 1 7 ~ )  (bulge off the axis) we find 

2 3 3/2mi,  3 J3 (4.2) 
and 

while equations (3.20) and (4.1) imply 

2,,J2mir = 2. (4.5) 

Therefore during the reversible increase of S the maximal (for every S < 2m:) 
linear dimension parallel to the symmetry plane (always occurring on it) increases 
continuously and attains its maximal possible value in the case of the extreme Kerr 
ergosphere. However, the maximal linear dimension parallel to the rotation axis does 
not change uniformly with increasing S,  being maximal for S = 0 and minimal for 
S = 2mi,. 

It has to be emphasised that in order to reach these conclusions we expressed all 
the distances in units of 2mi,. This unit is always preferable, compared with the total 
mass energy, in view of its constancy during the reversible transformations of the 
ergosphere. 

In figure 1 we have plotted the cross sections of the Kerr ergosphere's boundaries 
for s = mmi,, s = J2m:, s = 2mir. 

2 

2 
- 

5. Discussion and outlook 

The conclusions of this research can be summarised as follows: 
(i) The shape of the stationary-limit surface of a Kerr ergosphere depends in a 

crucial way on the relative value of S/m and mi,. 
(ii) A bulge always forms on the ergosphere's outer boundary, either on the 

rotation axis, if S/m <mi,, or off it, if S," >mi,. 
(iii) During the reversibl.: transformations of the ergosphere its shape changes and 

the bulge can either approach the symmetry plane, if 0 < S < mmi, and mmi, < S < 
Am:, or recede from it, if &mi  < S < 2mZ. 

(iv) The angular separation of the bulge from the rotation axis z > 0 ( C O )  always 
increases (decreases) with reversibly increasing S,  approaching its maximal (minimal) 
value of 30" (150") for the extreme Kerr ergosphere. 

(v) The linear dimension of a given ergosphere parallel to the symmetry plane is 
maximal on it, and increases uniformly, as S increases reversibly, approaching an 
upper value of 4mi, for the extreme Kerr ergosphere. The linear dimension parallel 
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CJlm,, 

Figure 1. The cross sgctions of the Kerr ergosphere’s boundaries are shown for S = mmi, 
(chain curves), S = J 2 m i  (broken curve) and S = 2 m i  (full curve). In each case from 
the two curves shown the upper curve corresponds to the stationary-limit surface and the 
lower line to the event horizon. The last case corresponds to the extreme Kerr ergosphere. 
The change of the ergosphere’s shape with reversibly increasing S is obvious. 

to the rotation axis does not change uniformly. For z > 0 its maximal value is 4mi,, 
occurring on the axis for vanishing S, while its minimal value is Emir, occurring for 
S = A m ;  (namely, before the extreme state of the Kerr ergosphere is reached) off 
the axis at an angular separation of 23O.28 from it. 

To the extent of our knowledge, the content of the present article constitutes the 
first effort for a complete description of the shape and size of an uncharged ergosphere 
along with its reversible transformations. The method applied is coordinate dependent, 
but the conclusions concerning the conditions for the formation of the bulge and its 
behaviour during the reversible transformations are quite general and coordinate 
independent. 

As far as the relation is concerned of our results and the ergosphere formed 
external to a slowly rotating material configuration, we recall that, according to 
Chandrasekhar and Miller (1  974) such homogeneous fluid configurations might 
develop an ergosphere near the equatorial plane. So, in this slow-rotation case the 
bulge does not form, in the sense that it always remains (rather) close to the rotation 
axis. 

The shape of the Kerr ergosphere’s boundaries has been considered by other 
authors. Thus, Sharp (1981) examining the embeddings of the Kerr geometry proved 
that for S < m2 the slope dt /dp of the stationary-limit surface vanishes either on the 
rotation axis (6 = 0, T )  or off it, at 6 defined exactly by equation (2.8) in the text, 
while for S = m2 the slope vanishes only at 6 defined by equation (2.8), namely, at 
an angular separation 30” (or 150”). Obviously this is exactly the behaviour of z’ and 
this simply means that the vanishing of dr /dp ( = t ’ / p ’ )  is a consequence of the 
condition z’ = 0. However, Sharp’s results (and figures), although generally in accord- 
ance with figure 1, have been based on the interpretation of r and 6 as polar (not 
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quasi-spheroidal) coordinates in flat space-time, as a consequence of which the 
ergosphere’s shape is not exactly the same as in figure 1. Thus, the surface of constant 
r (e.g. the event horizon) is a sphere of radius r and not an ellipsoid of revolution. 
Moreover, the slope of the stationary-limit surface is different. Thus, for the extreme 
Kerr ergosphere this slope on the symmetry axis is *2-”*, the corresponding result 
of Sharp being *l, On the other hand, the apparent discontinuity of the slope on 
the rotation axis of figure 1 is simply, as Sharp also remarked, a manifestation of the 
inner stationary-limit surface 

which joins smoothly with the outer one r = R+. It has to be emphasised at the 
outcome that Sharp did not examine the relation between the ergosphere’s shape (and 
dimensions) and its reversible transformations. 

The last argument is also true for the results of Hoenselaers (1980) referring to 
more general stationary, axisymmetric and asymptotically flat, vacuum solutions of 
the Einstein’s equations. It has to be pointed out, moreover, that according to these 
results, obtained with the aid of the Weyl coordinates, the stationary-limit surface 
can possibly have no common points with the plane z = 0, except at the origin. This, 
in view of the results of Chandrasekhar and Miller (1974), implies that at least some 
of the solutions of Hoenselaers (1980) cannot describe ergospheres formed external 
to (slowly) rotating material configurations. 

Moreover Bardeen (1973) derived the apparent shape and size of the Kerr ergo- 
sphere, based on the distant observations of the photon’s trajectories in the hole’s 
vicinity. Contrasted with ours, his results are characterised by the shape’s distortiog, 
a decrease of 0 by about 9”, and an increase in 9 and BmaX by factors of 8 and J2, 
respectively, due to the bending of light rays along with the frame-dragging effect 
induced by the hole’s rotation. 

Finally we should point out that the present article deals with the more astrophysical 
but less general, uncharged ergosphere. The case of the more general, charged 
(Kerr-Newmann) ergosphere, as well as the time scale of the ergosphere’s surface 
transformations, depending on the specific way that S increases, along with their 
probable astrophysical applications will be dealt with in a forthcoming article. 
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